Published on May 19, 2017 by Microsoft Research
Want create site? Find Free WordPress Themes and plugins.

We present an algorithm for policy search in stochastic dynamical systems using model-based reinforcement learning. The system dynamics are described with Bayesian neural networks (BNNs) that include stochastic input variables. These input variables allow us to capture complex statistical patterns in the transition dynamics (e.g. multi-modality and heteroskedasticity), which are usually missed by alternative modeling approaches. After learning the dynamics, our BNNs are then fed into an algorithm that performs random roll-outs and uses stochastic optimization for policy learning. We train our BNNs by minimizing $alpha$-divergences with $alpha = 0.5$, which usually produces better results than other techniques such as variational Bayes. We illustrate the performance of our method by solving a challenging problem where model-based approaches usually fail and by obtaining promising results in real-world scenarios including the control of a gas turbine and an industrial benchmark.

See more on this video at www.microsoft.com/en-us/research/video/learning-policy-search-stochastic-dynamical-systems-bayesian-neural-networks/

Did you find apk for android? You can find new Free Android Games and apps.

Leave a Reply

Be the First to Comment!

Notify of
avatar

wpDiscuz